Makariza Co-generation Power Plant - Environmental Feasibility Study

Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental

Contenido principal del artículo

Taha Ahmadi

Resumen

Este artículo estudia la posibilidad de generación de energía eléctrica mediante generador distribuido en la empresa Makariza. De acuerdo a la demanda de calor en esta empresa, los generadores utilizados en este estudio son de producción simultánea de electricidad y calor. De acuerdo a la demanda de carga eléctrica, térmica consumida por la empresa y el clima de la provincia de Colombia y de acuerdo a las especificaciones técnicas de las tecnologías de generación de electricidad y calor en el mundo, se selecciona la mejor tecnología. Finalmente se analizará el ahorro energético y la contaminación ambiental. El análisis muestra que el uso del sistema de producción simultánea de electricidad y calor en la empresa ayuda a ahorrar energía y también a reducir la contaminación ambiental.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Ahmadi, T., & Gaona, S. S. (july 2021). Designing a Mathematical Model and Control System for the Makariza Steam Boiler. Paper presented at the International Conference on Swarm Intelligence. https://doi.org/10.1007/978-3-030-78811-7_50

Al-Maghalseh, M., Odeh, S., & Saleh, A. (2017). Optimal sizing and allocation of DGs for real power loss reduction and voltage profile improvement in radial LV networks. Paper presented at the 2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT).

Andoni, M., Robu, V., Früh, W.-G., & Flynn, D. (2017). Game-theoretic modeling of curtailment rules and network investments with distributed generation. Applied energy, 201, 174-187. https://doi.org/10.1016/j.apenergy.2017.05.035

Arabkoohsar, A. (2020). Combined steam based high-temperature heat and power storage with an Organic Rankine Cycle, an efficient mechanical electricity storage technology. Journal of Cleaner Production, 247, 119098. https://doi.org/10.1016/j.jclepro.2019.119098

Beiron, J., Montañés, R. M., Normann, F., & Johnsson, F. (2020). Combined heat and power operational modes for increased product flexibility in a waste incineration plant. Energy, 202, 117696. https://doi.org/10.1016/j.energy.2020.117696

Bulatov, Y. N., & Kryukov, A. (2017). A multi-agent control system of distributed generation plants. Paper presented at the 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). DOI:10.1109/ICIEAM.2017.8076128

Chahartaghi, M., & Baghaee, A. (2020). Technical and economic analyses of a combined cooling, heating and power system based on a hybrid microturbine (solar-gas) for a residential building. Energy and Buildings, 217, 110005. https://doi.org/10.1016/j.enbuild.2020.110005

Di Fraia, S., Massarotti, N., Prati, M., & Vanoli, L. (2020). A new example of circular economy: Waste vegetable oil for cogeneration in wastewater treatment plants. Energy Conversion and Management, 211, 112763. https://doi.org/10.1016/j.enconman.2020.112763

Ferreira, A. C., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2021). Application of a cost-benefit model to evaluate the investment viability of the small-scale cogeneration systems in the Portuguese context. International journal of Sustainable Energy Planning and Management, 30. https://doi.org/10.5278/ijsepm.5400

Fytili, D., & Zabaniotou, A. (2018). Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Current Sustainable/Renewable Energy Reports, 5(2), 150-155. https://doi.org/10.1007/s40518-018-0109-5

Iora, P., Beretta, G. P., & Ghoniem, A. F. (2019). Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle. Energy, 173, 893-901. https://doi.org/10.1016/j.energy.2019.02.095

Revista #ashtag | 29

Lion, S., Vlaskos, I., & Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207, 112553. https://doi.org/10.1016/j.enconman.2020.112553

Lisin, E., Shuvalova, D., Volkova, I., & Strielkowski, W. (2018). Sustainable development of regional power systems and the consumption of electric energy. Sustainability, 10(4), 1111. https://doi.org/10.3390/su10041111

Odetayo, B., MacCormack, J., Rosehart, W. D., & Zareipour, H. (2017). A sequential planning approach for distributed generation and natural gas networks. Energy, 127, 428-437. https://doi.org/10.1016/j.energy.2017.03.118

Safarian, S., Unnthorsson, R., & Richter, C. (2020). Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy, 197, 117268. https://doi.org/10.1016/j.energy.2020.117268

Strambo, C., & González Espinosa, A. C. (2020). Extraction and development: fossil fuel production narratives and counternarratives in Colombia. Climate Policy, 20(8), 931-948. https://doi.org/10.1080/14693062.2020.1719810

Sung, T., Kim, S., & Kim, K. C. (2017). Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea. Applied Thermal Engineering, 127, 963-974. https://doi.org/10.1016/j.applthermaleng.2017.08.106

Tan, Y., & Shi, Y. (2021). Advances in Swarm Intelligence: 12th International Conference, ICSI 2021, Qingdao, China, July 17-21, 2021, Proceedings: Springer Nature. https://doi.org/10.1007/978-3-030-78811-7

Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985. https://doi.org/10.1016/j.energy.2017.05.160

van der Walt, H. L., Bansal, R. C., & Naidoo, R. (2018). PV based distributed generation power system protection: A review. Renewable Energy Focus, 24, 33-40. https://doi.org/10.1016/j.ref.2017.12.002

Wegener, M., Malmquist, A., Isalgué, A., & Martin, A. (2018). Biomass-fired combined cooling, heating and power for small scale applications–A review. Renewable and Sustainable Energy Reviews, 96, 392-410. https://doi.org/10.1016/j.rser.2018.07.044