Makariza Co-generation Power Plant - Environmental Feasibility Study

Central de Cogeneración Makariza - Estudio de Viabilidad Ambiental

Contenido principal del artículo

Taha Ahmadi


Este artículo estudia la posibilidad de generación de energía eléctrica mediante generador distribuido en la empresa Makariza. De acuerdo a la demanda de calor en esta empresa, los generadores utilizados en este estudio son de producción simultánea de electricidad y calor. De acuerdo a la demanda de carga eléctrica, térmica consumida por la empresa y el clima de la provincia de Colombia y de acuerdo a las especificaciones técnicas de las tecnologías de generación de electricidad y calor en el mundo, se selecciona la mejor tecnología. Finalmente se analizará el ahorro energético y la contaminación ambiental. El análisis muestra que el uso del sistema de producción simultánea de electricidad y calor en la empresa ayuda a ahorrar energía y también a reducir la contaminación ambiental.

Palabras clave


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Ahmadi, T., & Gaona, S. S. (july 2021). Designing a Mathematical Model and Control System for the Makariza Steam Boiler. Paper presented at the International Conference on Swarm Intelligence.

Al-Maghalseh, M., Odeh, S., & Saleh, A. (2017). Optimal sizing and allocation of DGs for real power loss reduction and voltage profile improvement in radial LV networks. Paper presented at the 2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT).

Andoni, M., Robu, V., Früh, W.-G., & Flynn, D. (2017). Game-theoretic modeling of curtailment rules and network investments with distributed generation. Applied energy, 201, 174-187.

Arabkoohsar, A. (2020). Combined steam based high-temperature heat and power storage with an Organic Rankine Cycle, an efficient mechanical electricity storage technology. Journal of Cleaner Production, 247, 119098.

Beiron, J., Montañés, R. M., Normann, F., & Johnsson, F. (2020). Combined heat and power operational modes for increased product flexibility in a waste incineration plant. Energy, 202, 117696.

Bulatov, Y. N., & Kryukov, A. (2017). A multi-agent control system of distributed generation plants. Paper presented at the 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). DOI:10.1109/ICIEAM.2017.8076128

Chahartaghi, M., & Baghaee, A. (2020). Technical and economic analyses of a combined cooling, heating and power system based on a hybrid microturbine (solar-gas) for a residential building. Energy and Buildings, 217, 110005.

Di Fraia, S., Massarotti, N., Prati, M., & Vanoli, L. (2020). A new example of circular economy: Waste vegetable oil for cogeneration in wastewater treatment plants. Energy Conversion and Management, 211, 112763.

Ferreira, A. C., Teixeira, S., Teixeira, J. C., & Nebra, S. A. (2021). Application of a cost-benefit model to evaluate the investment viability of the small-scale cogeneration systems in the Portuguese context. International journal of Sustainable Energy Planning and Management, 30.

Fytili, D., & Zabaniotou, A. (2018). Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Current Sustainable/Renewable Energy Reports, 5(2), 150-155.

Iora, P., Beretta, G. P., & Ghoniem, A. F. (2019). Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle. Energy, 173, 893-901.

Revista #ashtag | 29

Lion, S., Vlaskos, I., & Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207, 112553.

Lisin, E., Shuvalova, D., Volkova, I., & Strielkowski, W. (2018). Sustainable development of regional power systems and the consumption of electric energy. Sustainability, 10(4), 1111.

Odetayo, B., MacCormack, J., Rosehart, W. D., & Zareipour, H. (2017). A sequential planning approach for distributed generation and natural gas networks. Energy, 127, 428-437.

Safarian, S., Unnthorsson, R., & Richter, C. (2020). Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy, 197, 117268.

Strambo, C., & González Espinosa, A. C. (2020). Extraction and development: fossil fuel production narratives and counternarratives in Colombia. Climate Policy, 20(8), 931-948.

Sung, T., Kim, S., & Kim, K. C. (2017). Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea. Applied Thermal Engineering, 127, 963-974.

Tan, Y., & Shi, Y. (2021). Advances in Swarm Intelligence: 12th International Conference, ICSI 2021, Qingdao, China, July 17-21, 2021, Proceedings: Springer Nature.

Uris, M., Linares, J. I., & Arenas, E. (2017). Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain. Energy, 133, 969-985.

van der Walt, H. L., Bansal, R. C., & Naidoo, R. (2018). PV based distributed generation power system protection: A review. Renewable Energy Focus, 24, 33-40.

Wegener, M., Malmquist, A., Isalgué, A., & Martin, A. (2018). Biomass-fired combined cooling, heating and power for small scale applications–A review. Renewable and Sustainable Energy Reviews, 96, 392-410.